p75 neurotrophin receptor signaling regulates growth cone filopodial dynamics through modulating RhoA activity.
نویسندگان
چکیده
The mechanisms by which neurotrophins regulate growth cone motility are unclear. We investigated the role of the p75 neurotrophin receptor (p75NTR) in mediating neurotrophin-induced increases in filopodial length. Our data demonstrate that neurotrophin binding to p75NTR is necessary and sufficient to regulate filopodial dynamics. Furthermore, retinal and dorsal root ganglion growth cones from p75 mutant mice are insensitive to neurotrophins but display enhanced filopodial lengths comparable with neurotrophin-treated wild-type growth cones. This suggests unoccupied p75NTR negatively regulates filopodia length. Furthermore, p75NTR regulates RhoA activity to mediate filopodial dynamics. Constitutively active RhoA blocks neurotrophin-induced increases in filopodial length, whereas inhibition of RhoA enhances filopodial lengths, similar to neurotrophin treatment. BDNF treatment of retinal neurons results in reduced RhoA activity. Furthermore, p75 mutant neurons display reduced levels of activated RhoA compared with wild-type counterparts, consistent with the enhanced filopodial lengths observed on mutant growth cones. These observations suggest that neurotrophins regulate filopodial dynamics by depressing the activation of RhoA that occurs through p75NTR signaling.
منابع مشابه
Regulation of growth cone actin filaments by guidance cues.
The motile behaviors of growth cones at the ends of elongating axons determine pathways of axonal connections in developing nervous systems. Growth cones express receptors for molecular guidance cues in the local environment, and receptor-guidance cue binding initiates cytoplasmic signaling that regulates the cytoskeleton to control growth cone advance, turning, and branching behaviors. The dyn...
متن کاملNeuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac.
Growth of axons and dendrites is a dynamic process that involves guidance molecules, adhesion proteins, and neurotrophic factors. Although neurite extension is stimulated by the neurotrophin nerve growth factor (NGF), we found that the precursor of NGF, proNGF, induced acute collapse of growth cones of cultured hippocampal neurons. This retraction was initiated by an interaction between the p75...
متن کاملBrain-derived neurotrophic factor regulation of retinal growth cone filopodial dynamics is mediated through actin depolymerizing factor/cofilin.
The molecular mechanisms by which neurotrophins regulate growth cone motility are not well understood. This study investigated the signaling involved in transducing BDNF-induced increases of filopodial dynamics. Our results indicate that BDNF regulates filopodial length and number through a Rho kinase-dependent mechanism. Additionally, actin depolymerizing factor (ADF)/cofilin activity is neces...
متن کاملEphrin-A5 Suppresses Neurotrophin Evoked Neuronal Motility, ERK Activation and Gene Expression
During brain development, growth cones respond to attractive and repulsive axon guidance cues. How growth cones integrate guidance instructions is poorly understood. Here, we demonstrate a link between BDNF (brain derived neurotrophic factor), promoting axonal branching and ephrin-A5, mediating axonal repulsion via Eph receptor tyrosine kinase activation. BDNF enhanced growth cone filopodial dy...
متن کاملBicaudal-D1 regulates the intracellular sorting and signalling of neurotrophin receptors.
We have identified a new function for the dynein adaptor Bicaudal D homolog 1 (BICD1) by screening a siRNA library for genes affecting the dynamics of neurotrophin receptor-containing endosomes in motor neurons (MNs). Depleting BICD1 increased the intracellular accumulation of brain-derived neurotrophic factor (BDNF)-activated TrkB and p75 neurotrophin receptor (p75(NTR)) by disrupting the endo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 18 شماره
صفحات -
تاریخ انتشار 2004